\(\int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\) [169]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 298 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\frac {3 (-1)^{3/4} a^{5/2} (120 i A+121 B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d} \]

[Out]

3/64*(-1)^(3/4)*a^(5/2)*(120*I*A+121*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d
+(4+4*I)*a^(5/2)*(I*A+B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+1/64*a^2*(152*A-14
9*I*B)*tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d+1/96*a^2*(104*I*A+107*B)*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c
)^(3/2)/d-1/24*a^2*(8*A-11*I*B)*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(5/2)/d+1/4*I*a*B*tan(d*x+c)^(5/2)*(a+I*a*
tan(d*x+c))^(3/2)/d

Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {3675, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\frac {3 (-1)^{3/4} a^{5/2} (121 B+120 i A) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {a^2 (107 B+104 i A) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}+\frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d} \]

[In]

Int[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(3*(-1)^(3/4)*a^(5/2)*((120*I)*A + 121*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c +
d*x]]])/(64*d) + ((4 + 4*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c
+ d*x]]])/d + (a^2*(152*A - (149*I)*B)*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(64*d) + (a^2*((104*I)*A
 + 107*B)*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(96*d) - (a^2*(8*A - (11*I)*B)*Tan[c + d*x]^(5/2)*Sqr
t[a + I*a*Tan[c + d*x]])/(24*d) + ((I/4)*a*B*Tan[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(3/2))/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3675

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*
(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {1}{4} \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \left (\frac {1}{2} a (8 A-5 i B)+\frac {1}{2} a (8 i A+11 B) \tan (c+d x)\right ) \, dx \\ & = -\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {1}{12} \int \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \left (\frac {1}{4} a^2 (88 A-85 i B)+\frac {1}{4} a^2 (104 i A+107 B) \tan (c+d x)\right ) \, dx \\ & = \frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{8} a^3 (104 i A+107 B)+\frac {3}{8} a^3 (152 A-149 i B) \tan (c+d x)\right ) \, dx}{24 a} \\ & = \frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{16} a^4 (152 A-149 i B)-\frac {9}{16} a^4 (120 i A+121 B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{24 a^2} \\ & = \frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}-\left (4 a^2 (A-i B)\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx+\frac {1}{128} (3 a (120 A-121 i B)) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {\left (3 a^3 (120 A-121 i B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{128 d}+\frac {\left (8 a^4 (i A+B)\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {(4+4 i) a^{5/2} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {\left (3 a^3 (120 A-121 i B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{64 d} \\ & = \frac {(4+4 i) a^{5/2} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d}+\frac {\left (3 a^3 (120 A-121 i B)\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d} \\ & = -\frac {3 \sqrt [4]{-1} a^{5/2} (120 A-121 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{64 d}+\frac {(4+4 i) a^{5/2} (i A+B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (152 A-149 i B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{64 d}+\frac {a^2 (104 i A+107 B) \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{96 d}-\frac {a^2 (8 A-11 i B) \tan ^{\frac {5}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{24 d}+\frac {i a B \tan ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.26 (sec) , antiderivative size = 563, normalized size of antiderivative = 1.89 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\frac {B \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}{4 d}+\frac {\frac {a (8 A-5 i B) \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}}{6 d}+\frac {-\frac {i a^4 (40 i A+43 B) \sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{4} (-1)^{3/4} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right )+\frac {5}{4} \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}+\frac {1}{2} i \sqrt {1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x)\right )}{4 d \sqrt {1+i \tan (c+d x)}}+\frac {a \left (-\frac {1}{4} i a^3 (8 A-5 i B)-\frac {1}{4} a^3 (40 i A+43 B)\right ) \left (-\frac {4 i \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}+\frac {4 i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+i \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+\frac {i \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{\sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}\right )}{d}}{3 a}}{4 a} \]

[In]

Integrate[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(B*Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2))/(4*d) + ((a*(8*A - (5*I)*B)*Sqrt[Tan[c + d*x]]*(a + I*a*Ta
n[c + d*x])^(5/2))/(6*d) + (((-1/4*I)*a^4*((40*I)*A + 43*B)*Sqrt[a + I*a*Tan[c + d*x]]*((-3*(-1)^(3/4)*ArcSinh
[(-1)^(1/4)*Sqrt[Tan[c + d*x]]])/4 + (5*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])/4 + (I/2)*Sqrt[1 + I*Tan[
c + d*x]]*Tan[c + d*x]^(3/2)))/(d*Sqrt[1 + I*Tan[c + d*x]]) + (a*((-1/4*I)*a^3*(8*A - (5*I)*B) - (a^3*((40*I)*
A + 43*B))/4)*(((-4*I)*Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Tan
[c + d*x]])/Sqrt[I*a*Tan[c + d*x]] + ((4*I)*a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c +
 d*x]]*Sqrt[Tan[c + d*x]])/(Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + I*Sqrt[Tan[c + d*x]]*Sqrt[a +
 I*a*Tan[c + d*x]] + (I*Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c
+ d*x]])/(Sqrt[1 + I*Tan[c + d*x]]*Sqrt[I*a*Tan[c + d*x]])))/d)/(3*a))/(4*a)

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 739 vs. \(2 (240 ) = 480\).

Time = 0.17 (sec) , antiderivative size = 740, normalized size of antiderivative = 2.48

method result size
derivativedivides \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (-96 B \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-128 A \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+272 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+416 i A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+447 i B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -894 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+428 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-384 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -456 A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +912 A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-768 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +384 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -768 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{384 d \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(740\)
default \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (-96 B \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-128 A \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+272 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+416 i A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+447 i B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -894 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+428 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-384 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -456 A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +912 A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-768 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +384 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -768 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{384 d \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(740\)
parts \(\text {Expression too large to display}\) \(942\)

[In]

int(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/384/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(-96*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3*(a*tan(d*
x+c)*(1+I*tan(d*x+c)))^(1/2)-128*A*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
+272*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+416*I*A*(I*a)^(1/2)*(-I*a
)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+447*I*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I
*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a-894*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*
(1+I*tan(d*x+c)))^(1/2)+428*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)-384*I*
(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(
d*x+c)+I))*a-456*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2)
)*(-I*a)^(1/2)*a+912*A*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-768*I*ln(1/2*(2*I*a*tan(
d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+384*(I*a)^(1/2)*2^(1
/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-768
*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a)/
(I*a)^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1017 vs. \(2 (224) = 448\).

Time = 0.32 (sec) , antiderivative size = 1017, normalized size of antiderivative = 3.41 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/384*(768*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3
*d*e^(2*I*d*x + 2*I*c) + d)*log((I*sqrt(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*
((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) - 768*sqrt(2)*sqrt(-(I*A^2 + 2*A*B
- I*B^2)*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)*log((-I*sqrt
(2)*sqrt(-(I*A^2 + 2*A*B - I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (
-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))
*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) + 2*sqrt(2)*(13*(56*A - 65*I*B)*a^2*e^(7*I*d*x + 7*I*c) + 3*(504*A - 425*I
*B)*a^2*e^(5*I*d*x + 5*I*c) + (1096*A - 1135*I*B)*a^2*e^(3*I*d*x + 3*I*c) + 3*(104*A - 107*I*B)*a^2*e^(I*d*x +
 I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 9*sqrt
(-(14400*I*A^2 + 29040*A*B - 14641*I*B^2)*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2
*I*d*x + 2*I*c) + d)*log((sqrt(2)*((-120*I*A - 121*B)*a^2*e^(2*I*d*x + 2*I*c) + (-120*I*A - 121*B)*a^2)*sqrt(a
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 2*I*sqrt(-(14400*I*
A^2 + 29040*A*B - 14641*I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/((-120*I*A - 121*B)*a^2)) + 9*sqrt
(-(14400*I*A^2 + 29040*A*B - 14641*I*B^2)*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2
*I*d*x + 2*I*c) + d)*log((sqrt(2)*((-120*I*A - 121*B)*a^2*e^(2*I*d*x + 2*I*c) + (-120*I*A - 121*B)*a^2)*sqrt(a
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 2*I*sqrt(-(14400*I*
A^2 + 29040*A*B - 14641*I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/((-120*I*A - 121*B)*a^2)))/(d*e^(6
*I*d*x + 6*I*c) + 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \tan \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^(5/2)*tan(d*x + c)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0]Warning, replacing 0 by -28, a substitution variable should perhaps be pu
rged.Warnin

Mupad [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \]

[In]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2), x)